S4.2 Conservation of energy.
Yet us summarize what we have
discussed so
$$x_1$$
 far:
 $K_1 - K_1 = \int_{X_1} F(x) dx = G(x_2) - G(x_1) = G_2 - G_1$
rearranging gives
 $K_1 - G_2 = K_1 - G_1$ (*)
Introduce the function
 $U(x) = -G(x)$ $F(x) = -\frac{dU}{dx}$
 \rightarrow (*) becomes
 $K_2 + U_2 = K_1 + U_1$
 $=: E_1 = :E_1$
Have arrived at
Theorem 2 (law of conservation of energy):
The quantity $E = K_1 U = \frac{1}{2}mv^2 + U(x)$
does not change with time, i.e
is "conserved" throughout time

$$\frac{\text{Remark}}{\text{E}}:$$

$$E = k + U \quad \text{is called "total mechanical energy" and U is called "potential energy" and U is called "potential energy".
$$\frac{\text{Example 1}:}{\text{Example 1}:}$$
i) Suppose we drop a rock from a certain height h \longrightarrow total mechanical energy $E = \frac{1}{2} m v^2 + U(y)$ has to be conserved throughout the fall:

$$F = -mg \implies U(y) = mgy$$

$$es - \frac{dU}{dy} = -mg = F$$

$$\implies energy conservation law becomes:$$

$$E_{1} = \frac{1}{2} m v_{2}^{2} + mgy_{2} = \frac{1}{2} m v_{1}^{2} + mgy_{1} = E,$$
ii) In the mass and spring system the corresponding relations are:

$$U(x) = \frac{1}{2} k x^{2} as - \frac{dU}{dx} = -kx = F(x)$$
giving $E_{2} = \frac{1}{2} m v_{1}^{2} + \frac{1}{2} k x_{1}^{2} = \frac{1}{2} m v_{1}^{2} + \frac{1}{2} k x_{1}^{2} = E,$$$

$$\frac{\S 4.3 \quad Conservation \quad of \quad energy \quad in \quad d>1}{Xet}$$

$$\frac{Xet}{Us} \quad summarize \quad the \quad situation \quad d=1:$$

$$\frac{dK}{dt} = m \cdot o \quad dv = m \cdot a = F \cdot v = F \cdot dx \quad , \quad K = \frac{1}{2}m \cdot v^{2}$$

$$\frac{dK}{dt} = F \cdot dx \quad (upon \quad cancelling \quad dt)$$

$$K_{2} - K_{1} = \int_{X_{1}}^{X_{2}} F(x) \quad dx$$

$$= U(x_{1}) - U(x_{2})$$

$$K_{2} + U_{2} = K_{1} + U_{1}$$

$$K = \lim_{T} u^{2} = \lim_{T} (u^{2} + u^{2})$$

$$\implies \frac{dK}{dF} = m \left(u_{x} \frac{du^{2}}{dF} + u^{2} \frac{du^{2}}{dF} \right)$$

$$= F_{x} u^{2} + F_{y} u^{2} = F_{x} \frac{dx}{dF} + F_{y} \frac{dy}{dF}$$

$$dK = F_{x} dx + F_{y} dy$$

$$\frac{d \ge 2}{dF}$$
Denote the position of a point-like

mass by
$$\vec{r}(f)$$
. Then $\vec{U}(f) = \vec{r}(f)$ and

$$\frac{d}{dt} \left(\frac{1}{2}m\vec{r}^{2}\right) = \frac{1}{2}m \frac{d}{dt} (\vec{r} \cdot \vec{r})$$
change $ef = 1m\left(\vec{r} \cdot \vec{r} + \vec{r} \cdot \vec{r}\right)$
Kinetic energy $= m\vec{r} \cdot \vec{r} = \vec{F} \cdot \vec{r}$
work done
 $l per unit time$ $= m\vec{r} \cdot \vec{r} = \vec{F} \cdot \vec{r}$
We define the infinitesimal work
done $as:$
 $dW = \vec{F} \cdot d\vec{r} = \sum_{i=1}^{d} \vec{F}_{i} dr_{i} = dk$ (*)
 $\left(\frac{indel}{2}\vec{F}_{x} dx + \vec{F}_{y} dy\right)$
and power as
 $P = \frac{dK}{dF} = \vec{F} \cdot \vec{r}$
For vectors we have the formula
 $\vec{A} \cdot \vec{B} = AB \cos\theta$, $A = |\vec{A}|, B = |\vec{B}|$
where θ is the angle suspended
between the vectors \vec{A} and \vec{B} .
 $\rightarrow for a constant force: W = Farcos(\vec{F}, ar)$

Equation (*) gives for the work done
between two positions
$$\vec{r}$$
, and \vec{r}_2
along a curve $C(\vec{r}_1, \vec{r}_2)$:
 $\vec{F}_1 = \int \vec{F}(\vec{r}) \cdot d\vec{r}$
 $V(\vec{r}_1, \vec{r}_2) = \int \vec{F}(\vec{r}) \cdot d\vec{r}$
 $= \lim_{\substack{I \le I \le I}} \sum_{\substack{\Delta W \\ \Delta \vec{r} \to 0}} \sum_{\substack{\Delta W \\ \Delta \vec{r} \to 0}} \sum_{\substack{\Delta W \\ \Delta \vec{r} \to 0}} \frac{\Delta W}{\approx \vec{F} \cdot \Delta \vec{r}}$
Suppose \vec{I} go from \vec{r}_1 to \vec{r}_2 along
a path C_1 and some one else goes
along C_2 :
 \vec{r}_1
 \vec{r}_2
 \vec{r}_2
 \vec{r}_3
 \vec{r}_4
 \vec{r}_5 the work done the same,
i.e does $\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$ hold ?

Together:

$$\oint \vec{F} \cdot d\vec{r} = F_x(1)\Delta x + F_y(2)\Delta y - F_x(3)\Delta x - F_y(4)\Delta y$$

rearrange:
(1) + (3) =
$$[F_x(1) - F_x(3)] \Delta \times$$

Luse $F_x(3) = F_y(1) + \frac{\partial F_y}{\partial y} \Delta y$
 $= -\frac{\partial F_x}{\partial y} \Delta \times \Delta y$
similarly
(2) + (4) = $F_y(2)\Delta y - F_y(4)\Delta y = \frac{\partial F_y}{\partial x} \Delta \times \Delta y$
 $\Rightarrow \oint \vec{F} \cdot d\vec{r} = (\frac{\partial F_y}{\partial x} - \frac{\partial F_y}{\partial y}) \Delta \times \Delta y$
 $= (\vec{\nabla} \times \vec{F})_2$ Lowmal stetor
 $= (\vec{\nabla} \times \vec{F}) \cdot \vec{n} \Delta a$
 $\rightarrow Now fill a given loop C with any
convenient surface S
 $\vec{F} \cdot d\vec{r} = \int (\vec{\nabla} \times \vec{F})_n da$
 $\vec{F} \cdot d\vec{r} = \int (\vec{\nabla} \times \vec{F})_n da$$

Definition 3:
A "conservative" force is a force
satisfying

$$\oint W = \oint \vec{F} \cdot d\vec{r} = 0$$

regardless of the choice of the
closed path C
Theorem 3:
Any force $\vec{F}(\vec{r})$ which can be
withen as $\vec{F} = \vec{\nabla} U(\vec{r}) \stackrel{d=2}{=} \left(\frac{\partial U}{\partial x} \right)$
for a scalar function $U \stackrel{d=2}{=} \left(\frac{\partial U}{\partial x} \right)$
is conservative
Proof: Choose disk D, such that $\partial D = C$
Stokes'law
 $\oint \vec{F} \cdot d\vec{r} = \oint \vec{\nabla} U \cdot d\vec{r} = \int \vec{\nabla} x(\vec{\nabla} U) \cdot \vec{n} da = 0$
But: $\vec{\nabla} x(\vec{\nabla} U) = \frac{\partial}{\partial x} \frac{\partial U}{\partial y} - \frac{\partial}{\partial y} \frac{\partial U}{\partial x} = 0$

Rewrite (*) as:

$$M\left[\frac{m_{1}\ddot{x}_{1} + m_{2}\ddot{x}_{2}}{M}\right] = F_{e} , M = m_{1} + m_{2}$$

$$M \frac{d^{2}X}{dt^{2}} = F_{e} \quad (* *)$$
where $X = \left[\frac{m_{1}x_{1} + m_{2}x_{2}}{M}\right]$ weighted
average
"center- of -mass coordinate CM"
In general, for N masses in
3 dimensions:
Definition 1: (CM)
Zef N bodies with masses
 m_{1}, \dots, m_{N} have positions $\overline{v}_{1}, \dots, \overline{v}_{N}$
 \rightarrow then their center-of-mass
is given by
 $\overline{R} = \frac{\sum_{i=1}^{N} m_{i}\overline{v}_{i}}{\sum_{i=1}^{N} m_{i}}$

Using
$$\overline{R}$$
, the generalization of (**)
for N masses becomes
 $M \frac{d^2 \overline{R}}{dt^2} = \overline{Fe}$, $M = \sum_{i=1}^{N} m_i$
internal forces have cancelled out
due to Newton's 3rd law
 $\frac{35.1}{M}$ Conservation of momentum
Now consider the case $\overline{Fe} = 0$
 $\Rightarrow d^2 \overline{R} = 0 \implies \frac{d\overline{R}}{dt} = const.$
 $\bigoplus M \frac{d\overline{R}}{dt} = const.$
 $\frac{Definition 2(momentum):}{The "momentum" \overline{p}} of a particleis defined by: $\overline{p} = m\overline{v}$
 $\frac{Theorem 1:}{Fe=0} M \frac{d^2 \overline{R}}{dt^2} = \frac{d\overline{P}}{dt} = \sum_{i=1}^{N} \frac{d\overline{P}}{dt} = 0$
"In the absence of external forces, the
CM momentum is conserved"$

Example I (Rocket science):
Imagine a rocket flying with
a velocity
$$\vec{v}$$
:
a)
b) the rocket increases its speeds by
emitting gases at "exhaust velocity"- \vec{v}_s
(relative to the rocket)
 $\vec{v} - \vec{v}_s \longrightarrow \vec{v} + d\vec{v}$

Let us balance the momentum
before and after:

$$M\overline{\sigma} = (M-8)(\overline{\sigma}+d\overline{\sigma}) + (\overline{\sigma}-\overline{\sigma})8$$

 $= M\overline{\sigma} + Md\overline{\sigma} - \overline{\sigma}8 - d\overline{\sigma}.8 + \overline{\sigma}.8 - \overline{\sigma}.8$
 $\iff \sigma_{s} = Md\overline{\sigma} \quad \sigma_{s} - \frac{dM}{M} = \frac{d\sigma}{\sigma_{s}}$
 $-dM$
Integrating gives $\sigma(t) = \sigma_{s}\log \frac{M_{o}}{M(t)}$ (initial
 $rocket \sigma dR.$
 $= \sigma$)